Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5
نویسندگان
چکیده
An AUG in an optimal nucleotide context is the preferred translation initiation site in eukaryotic cells. Interactions among translation initiation factors, including eIF1 and eIF5, govern start codon selection. Experiments described here showed that high intracellular eIF5 levels reduced the stringency of start codon selection in human cells. In contrast, high intracellular eIF1 levels increased stringency. High levels of eIF5 induced translation of inhibitory upstream open reading frames (uORFs) in eIF5 mRNA that initiate with AUG codons in conserved poor contexts. This resulted in reduced translation from the downstream eIF5 start codon, indicating that eIF5 autoregulates its own synthesis. As with eIF1, which is also autoregulated through translation initiation, features contributing to eIF5 autoregulation show deep evolutionary conservation. The results obtained provide the basis for a model in which auto- and cross-regulation of eIF5 and eIF1 translation establish a regulatory feedback loop that would stabilize the stringency of start codon selection.
منابع مشابه
Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection
The efficiency of start codon selection during ribosomal scanning in eukaryotic translation initiation is influenced by the context or flanking nucleotides surrounding the AUG codon. The levels of eukaryotic translation initiation factors 1 (eIF1) and 5 (eIF5) play critical roles in controlling the stringency of translation start site selection. The basic leucine zipper and W2 domain-containing...
متن کاملInitiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1).
The central feature of standard eukaryotic translation initiation is small ribosome subunit loading at the 5' cap followed by its 5' to 3' scanning for a start codon. The preferred start is an AUG codon in an optimal context. Elaborate cellular machinery exists to ensure the fidelity of start codon selection. Eukaryotic initiation factor 1 (eIF1) plays a central role in this process. Here we sh...
متن کاملRegulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.
Genetic studies in yeast have shown that the translation initiation factor eIF5 plays an important role in the selection of the AUG start codon. In order to ensure translation fidelity, the hydrolysis of GTP bound to the 40S preinitiation complex (40S.Met-tRNA(i).eIF2.GTP), promoted by eIF5, must occur only when the complex has selected the AUG start codon. However, the mechanism that prevents ...
متن کاملeIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs
Alternative translation initiation mechanisms such as leaky scanning and reinitiation potentiate the polycistronic nature of human transcripts. By allowing for reprogrammed translation, these mechanisms can mediate biological responses to stimuli. We combined proteomics with ribosome profiling and mRNA sequencing to identify the biological targets of translation control triggered by the eukaryo...
متن کاملThe C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.
Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012